Alkylphenol biotransformations catalyzed by 4-ethylphenol methylenehydroxylase.
نویسندگان
چکیده
4-ethylphenol methylenehydroxylase from Pseudomonas putida JD1 acts by dehydrogenation of its substrate to give a quinone methide, which is then hydrated to an alcohol. It was shown to be active with a range of 4-alkylphenols as substrates. 4-n-propylphenol, 4-n-butylphenol, chavicol, and 4-hydroxydiphenylmethane were hydroxylated on the methylene group next to the benzene ring and produced the corresponding chiral alcohol as the major product. The alcohols 1-(4'-hydroxyphenyl)propanol and 1-(4'-hydroxyphenyl)-2-propen-1-ol, produced by the biotransformation of 4-n-propylphenol and chavicol, respectively, were shown to be R(+) enantiomers. 5-Indanol, 6-hydroxytetralin, 4-isopropylphenol, and cyclohexylphenol, with cyclic or branched alkyl groups, gave the corresponding vinyl compounds as their major products.
منابع مشابه
Stereochemical aspects of the oxidation of 4-ethylphenol by the bacterial enzyme 4-ethylphenol methylenehydroxylase.
The O2-independent hydroxylase 4-ethylphenol methylenehydroxylase (4EPMH) from Pseudomonas putida JD1 catalysed the complete conversion of 4-ethylphenol into 1-(4-hydroxyphenyl)ethanol together with a small amount of 4-hydroxyacetophenone, but with no formation of the side product 4-vinylphenol reported to be formed when the similar enzyme p-cresol methylhydroxylase (PCMH) catalyses this reacti...
متن کاملGlucuronidation and excretion of nonylphenol in perfused rat liver.
Nonylphenol, an environmental estrogenic chemical, is reported to have adverse effects on the reproductive organs of animals. In this study, the metabolism of nonylphenol and that of other alkylphenols in the rat liver was investigated using liver perfusion. Alkylphenols (nonylphenol, hexylphenol, butylphenol, and ethylphenol) were glucuronidated by rat liver microsomes. Nonylphenol was found t...
متن کاملMetabolism of cinnamic acids by some Clostridiales and emendation of the descriptions of Clostridium aerotolerans, Clostridium celerecrescens and Clostridium xylanolyticum.
The ability of Clostridium aerotolerans DSM 5434T, Clostridium celerecrescens DSM 5628T, Clostridium methoxybenzovorans DSM 12182T, Clostridium stercorarium ATCC 35414T, Clostridium subterminale DSM 2636, Clostridium termitidis DSM 5398T, Clostridium thermolacticum DSM 2910T, Clostridium thermopalmarium DSM 5974T and Clostridium xylanolyticum DSM 6555T to metabolize cinnamic acid and various de...
متن کاملFactors affecting the production of 4-ethylphenol by the yeast Dekkera bruxellensis in enological conditions
The conversion of p-coumaric acid into 4-ethylphenol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in synthetic media. The production of 4-ethylphenol occurred roughly between mid-exponential growth phase and the beginning of the stationary phase. This behaviour was observed when glucose was the only energy and carbon source, the conversion rate being close to 90%. Ethan...
متن کاملThe e¡ectof sugar concentrationand temperature ongrowthand volatile phenol production byDekkera bruxellensis inwine
The wine spoilage yeast Dekkera bruxellensis was evaluated for the production of 4-ethylphenol under low concentrations (0.02–20 g L ) of glucose and fructose in synthetic media. Measurable amounts of 4-ethylphenol were produced over 0.2 g L 1 of each sugar. The yeast growth rate and amount of biomass formed increased from 0.2 to 20 g L 1 of glucose or fructose, being accompanied by increasing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 69 6 شماره
صفحات -
تاریخ انتشار 2003